Particle swarm optimization for linear support vector machines based classifier selection
نویسندگان
چکیده
منابع مشابه
Particle swarm optimization for linear support vector machines based classifier selection
Particle swarm optimization is a metaheuristic technique widely applied to solve various optimization problems as well as parameter selection problems for various classification techniques. This paper presents an approach for linear support vector machines classifier optimization combining its selection from a family of similar classifiers with parameter optimization. Experimental results indic...
متن کاملTwin Support Vector Machines Based on Particle Swarm Optimization
Twin support vector machines (TWSVM) is similar in spirit to proximal SVM based on generalized eigenvalues (GEPSVM), which constructs two nonparallel planes by solving two related SVM-type problems, so that its computing cost in the training phase is only 1/4 of standard SVM. In addition to keeping the advantages of GEPSVM, the classification performance of TWSVM is also significantly better th...
متن کاملTwin Support Vector Machines Based on Quantum Particle Swarm Optimization
Twin Support Vector Machines (TWSVM) are developed on the basis of Proximal Support Vector Machines (PSVM) and Proximal Support Vector Machine based on the generalized eigenvalues(GEPSVM). The solving of binary classification problem is converted to the solving of two smaller quadratic programming problems by TWSVM. And then it gets two non-parallel hyperplanes. Its efficiency of dealing with t...
متن کاملFace Detection Using Particle Swarm Optimization and Support Vector Machines
In this paper, a face detection algorithm that uses Particle Swarm Optimization (PSO) for searching the image is proposed. The algorithm uses a linear Support Vector Machine (SVM) as a fast and accurate classifier in order to search for a face in the two-dimension solution space. Using PSO, the exhaustive search in all possible combinations of the 2D coordinates can be avoided, saving time and ...
متن کاملParticle swarm optimization for parameter determination and feature selection of support vector machines
Support vector machine (SVM) is a popular pattern classification method with many diverse applications. Kernel parameter setting in the SVM training procedure, along with the feature selection, significantly influences the classification accuracy. This study simultaneously determines the parameter values while discovering a subset of features, without reducing SVM classification accuracy. A par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Modelling and Control
سال: 2014
ISSN: 2335-8963,1392-5113
DOI: 10.15388/na.2014.1.2